
What is the Expected Return on the Market?

Ian Martin∗

April, 2015

Abstract

This paper presents a new bound that relates the equity premium to a volatility

index, SVIX, that can be calculated from index option prices. This bound, which relies

only on very weak assumptions, implies that the equity premium is extremely volatile,

and that it rose above 20% at the height of the crisis in 2008. More aggressively, I

argue that the lower bound—whose time-series average is about 5%—is approximately

tight and that the high equity premia available at times of stress largely reflect high

expected returns over the short run. Under a stronger assumption, I show how to use

option prices to measure the forward-looking probability that the market goes up (or

down) over a given horizon, and to compute the expected excess return on the market

conditional on the market going up (or down).
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The expected excess return on the market, or equity premium, is one of the central

quantities of finance. Aside from its obvious intrinsic interest, the equity premium is a

key determinant of the risk premium required for arbitrary assets in the CAPM and its

descendants; and the question of how much the equity premium varies over time lies at the

heart of the vast literature on excess volatility.

This paper presents a new bound that relates the equity premium to a volatility index

that can be calculated from index option prices. The bound implies that the equity premium

is extremely volatile, and that it rose above 20% at the height of the crisis in 2008. The

bound is valid under a minimal assumption—the negative correlation condition, introduced

in Section 1—that holds in all of the leading macro-finance models; I also provide evidence

for the validity of the negative correlation condition by estimating a linear factor model in

the style of Fama and French (1996).

While it is now well understood that the equity premium is time-varying, this paper

deviates from the literature in its basic aim, which is to use theory to find an asset price

that signals whether expected returns are high or low at a given point in time. The distinctive

features of my approach, relative to the literature, are that (i) the predictor variable, SVIX2,

is motivated by asset pricing theory; (ii) no parameter estimation is required, so concerns

over in-sample/out-of-sample fit do not arise; and (iii) by using an asset price—the SVIX2

index—as predictor variable, I avoid the need to use infrequently-updated accounting data.

As a result, the approach of this paper is in principle suitable for predicting the equity

premium in real time.

1 Expected returns and risk-neutral variance

If we use asterisks to denote quantities calculated with risk-neutral probabilities, and MT to

denote the stochastic discount factor (SDF) that prices time-T payoffs from the perspective

of time t, then we can price any time-T payoff XT either via the SDF or by computing

expectations with risk-neutral probabilities and discounting at the riskless rate, Rf,t, which

is known at time t. The SDF notation,

time-t price of a claim to XT at time T = Et(MTXT ).

is commonly used in equilibrium models or, more generally, whenever there is an emphasis

on the real-world distribution. The risk-neutral notation,

time-t price of a claim to XT at time T =
1

Rf,t

E∗t XT ,
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is commonly used in derivative pricing, or more generally whenever the underlying logic is

that of no-arbitrage. The two are equivalent, so the choice of notation is largely a matter

of personal taste; I will tend to follow convention by using the risk-neutral notation when

no-arbitrage logic is emphasized. To illustrate the two alternative notations, we can write

the conditional risk-neutral variance of any gross return RT as

var∗t RT = E∗t R2
T − (E∗t RT )2 = Rf,t Et

(
MTR

2
T

)
−R2

f,t. (1)

The starting point of this paper is the following identity:

EtRT −Rf,t =
[
Et(MTR

2
T )−Rf,t

]
−
[
Et(MTR

2
T )− EtRT

]
=

1

Rf,t

var∗t RT − covt(MTRT , RT ). (2)

The first equality adds and subtracts Et(MTR
2
T ); the second exploits (1) and the fact that

EtMTRT = 1.

The identity (2) decomposes the asset’s risk premium into two components. The first,

risk-neutral variance, can be computed directly in terms of time-t asset prices. The second

is a covariance term that can be controlled: under a weak condition, it is negative.

Definition 1. Given a gross return RT and stochastic discount factor MT , the negative

correlation condition (NCC) holds if covt (MTRT , RT ) ≤ 0.

Together, the identity (2) and the NCC imply the following inequality, from which the

results of the paper flow:

EtRT −Rf,t ≥
1

Rf,t

var∗t RT . (3)

This is a bound in the opposite direction to the Hansen–Jagannathan (1991) bound.

Together, the two bounds imply that

1

Rf,t

var∗t RT ≤ EtRT −Rf,t ≤ Rf,t · σt(MT ) · σt(RT ),

where σt(·) denotes conditional (real-world) standard deviation. The left-hand inequality

is (3). It has the advantage that it relates the unobservable equity premium to a directly

observable quantity, risk-neutral variance; but the disadvantage that it requires the NCC

to hold. In contrast, the right-hand inequality, the Hansen–Jagannathan bound, has the

advantage of holding completely generally; but the disadvantage (noted by Hansen and

Jagannathan) that it relates two quantities neither of which can be directly observed. Time-

series averages must therefore be used as proxies for the true quantities of interest, forward-

looking means and variances. This procedure requires assumptions about the stationarity

3



and ergodicity of returns over appropriate sample periods and at the appropriate frequency.

Such assumptions are not completely uncontroversial (see, for example, Malmendier and

Nagel (2011)).

Inequality (3) is reminiscent of an approach taken by Merton (1980), based on the equa-

tion

instantaneous risk premium = γσ2 , (4)

where γ is a measure of aggregate risk aversion, and σ2 is the instantaneous variance of the

market return, and of a closely related calculation carried out by Cochrane (2011, p. 1082).

There are some important differences between the two approaches, however. First, Mer-

ton assumes that the market’s price follows a diffusion, thereby ruling out the effects of

skewness and of higher moments by construction.1 In contrast, we need no such assumption.

Related to this, there is no distinction between risk-neutral and real-world (instantaneous)

variance in a diffusion-based model: the two are identical, by Girsanov’s theorem. Once we

move beyond diffusions, however, the appropriate generalization relates the risk premium to

risk-neutral variance.

A second difference is that (4) requires that there is a representative agent with constant

relative risk aversion γ. The NCC holds under considerably more general circumstances, as

shown in Section 2.1.

Third, Merton implements (4) using realized historical volatility rather than by exploiting

option price data, though he notes that volatility measures can be calculated “by ‘inverting’

the Black–Scholes option pricing formula.” However, Black–Scholes implied volatility would

only provide the correct measure of σ if we really lived in a Black–Scholes (1973) world in

which prices followed geometric Brownian motions. The results of this paper show how to

compute the right measure of variance in a more general environment.

2 The negative correlation condition

This section is devoted to arguing that the NCC holds. It is independent of the rest of the

paper. I start by laying out some sufficient conditions for the NCC to hold in theoretical

models. These sufficient conditions cover many of the leading macro-finance models, includ-

ing Campbell and Cochrane (1999), Bansal and Yaron (2004), Bansal, Kiku, Shaliastovich

and Yaron (2012), Campbell, Giglio, Polk and Turley (2012), Barro (2006), and Wachter

1Cochrane’s calculation also implicitly makes this assumption. Amongst others, Rubinstein (1973), Kraus

and Litzenberger (1976), and Harvey and Siddique (2000) emphasize the importance of skewness in portfolio

choice.
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(2013).2

I next test the plausibility of the NCC by carrying out a time-series estimation of two

linear factor models: the three-factor model of Fama and French (1996), and the same model

with a momentum factor included. Estimates of the covariance cov (MTRT , RT ) are negative,

consistent with the NCC, and highly stable across sample periods. The estimates are close

to zero both economically and statistically, suggesting that the inequality (3) may be close

to being tight (that is, to holding with equality).

2.1 The NCC in theoretical models

The NCC is a convenient and flexible way to restrict the set of stochastic discount factors

under consideration. (It would, for example, fail badly in a risk-neutral economy, that is, if

MT were deterministic.) For the NCC to hold, we need the SDF to be negatively correlated

with the return RT ; this will be the case for any asset that even roughly approximates the

idealized notion of ‘the market’ in economic models. We also need the SDF to be volatile,

as is the case empirically (Hansen and Jagannathan (1991)).

We start out with a lognormal example that provides a simple and convenient way to

make this point. It provides a first indication of why the NCC is likely to hold in practice

and shows that the NCC holds in several leading macro-finance models. (All proofs for this

section are in the appendix.)

Example 1. Suppose that the SDF and return RT are conditionally lognormal and write

rf,t = logRf,t, µR,t = logEtRT , and σ2
R,t = vart logRT . Then the NCC is equivalent to the

assumption that the conditional Sharpe ratio of the asset, λt ≡ (µR,t− rf,t)/σR,t, exceeds its

conditional volatility, σR,t.

The NCC therefore holds in any conditionally lognormal model in which the market’s

conditional Sharpe ratio is higher than its conditional volatility. Empirically, the Sharpe

ratio of the market is on the order of 50% while its volatility is on the order of 16%, so

this property holds in the calibrated models of Campbell and Cochrane (1999), Bansal and

Yaron (2004), Bansal, Kiku, Shaliastovich and Yaron (2012) and Campbell, Giglio, Polk and

Turley (2012), among many others.

The critical feature of the lognormal setting (here and, arguably, more generally) is that

real-world volatility and risk-neutral volatility are one and the same thing.3 So if an asset’s

2In fact, I am not aware of any model that attempts to match the data quantitatively in which the NCC

does not hold.

3More precisely, vart logRT = var∗t logRT if MT and RT are jointly lognormal under the real-world
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Sharpe ratio is larger than its (real-world or risk-neutral) volatility, then its expected excess

return is larger than its (real-world or risk-neutral) variance. That is, by (2), the NCC holds.

Unfortunately, the lognormality assumption is inconsistent with well-known properties

of index option prices. The most direct way to see this is to note that equity index op-

tions exhibit a volatility smile: Black–Scholes implied volatility varies across strikes, holding

option maturity constant. This concern motivates the next example, which provides an

interpretation of the NCC that is not dependent on a lognormality assumption.

Example 2. Suppose that there is an unconstrained investor who maximizes expected

utility over next-period wealth, whose wealth is fully invested in the market, and whose

relative risk aversion (which need not be constant) is at least one at all levels of wealth.

Then the NCC holds for the market return.

Example 2 has the attractive feature that it does not require that the identity of the

investor whose wealth is fully invested in the market should be fixed over time; thus it allows

for the possibility that the portfolio holdings and beliefs of (and constraints on) different

investors are highly heterogeneous over time. Moreover, it does not require that all investors

are fully invested in the market, that all investors are unconstrained, or that all investors

are rational. Under the interpretation of Example 2, the question answered by this paper is

this: What expected return must be perceived by an unconstrained short-horizon investor

who currently holds the market?

But, by focussing on a one-period investor, the example abstracts from intertemporal

issues, and therefore from the presence of state variables that affect the value function. To

the extent that we are interested in the behavior of long-lived utility-maximizing investors, we

want to allow for the fact that investment opportunities vary over time, as in the framework

of Merton (1973). When will the NCC hold in Merton’s framework? Example 1 provided

one answer to this question, but we can also frame sufficient conditions directly in terms of

the properties of preferences and state variables, as in the next example (in which the driving

random variables are Normal, as in Example 1; this assumption will shortly be relaxed).

Example 3a. Suppose, in the notation of Cochrane (2005, pp. 166–7), that the SDF takes

the form

MT = β
VW (WT , z1,T , . . . , zN,T )

VW (Wt, z1,t, . . . , zN,t)
,

where WT is the time-T wealth of a risk-averse investor whose wealth is fully invested in the

market, so that WT = (Wt−Ct)RT (where Ct denotes the investor’s time-t consumption and

RT the return on the market); VW is the investor’s marginal value of wealth; and z1,T , . . . , zN,T

measure, conditional on time-t information.
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are state variables, with signs chosen so that VW is weakly decreasing in each (so a high value

of z1,T is good news, just as a high value of WT is good news). Suppose also that

(i) Risk aversion is sufficiently high: −WVWW/VW ≥ 1 at all levels of wealth W and all

values of the state variables.

(ii) The market return, RT , and state variables, z1,T , . . . , zN,T , are increasing functions of

conditionally Normal random variables.

(iii) Pairwise correlations between the Normal random variables are nonnegative.

Then the NCC holds for the market return.

Condition (i) imposes an assumption that risk aversion is at least one, as in Example 2;

again, risk aversion may be wealth- and state-dependent. Condition (ii) is the discrete-time

analog of Merton’s diffusion assumption.

Condition (iii) is the interesting one: it ensures that the movements of state variables do

not undo the logic of Example 1. To get a feel for it, consider a model with a single state

variable, the price-dividend ratio of the market (perhaps as a proxy for the equity premium,

as in Campbell and Viceira (1999)).4 For consistency with the sign convention on the state

variables, we need the marginal value of wealth to be weakly decreasing in the price-dividend

ratio. It is intuitively plausible that the marginal value of wealth should indeed be high in

times when valuation ratios are low; and this holds in Campbell and Viceira’s setting, in

the power utility case, if risk aversion is at least one.5 Then condition (iii) amounts to the

(empirically extremely plausible) requirement that the correlation between the wealth of the

representative investor and the market price-dividend ratio is positive. Equivalently, we need

the return on the market and the market price-dividend ratio to be positively correlated.

Again, this holds in Campbell and Viceira’s calibration.

Example 3a assumes that the investor is fully invested in the market. Roll (1977) famously

criticized empirical tests of the CAPM by pointing out that stock market indices are imperfect

proxies for the idealized theoretical notion of ‘the market’, and do not in general fully capture

risks associated with labor or other sources of income. Without denying the force of this

observation, the implicit position taken is that although the S&P 500 index is not the sum

total of all wealth, it is a tolerable benchmark; and that it is reasonable, and interesting,

4The price-dividend ratio is positive, so evidently cannot be Normally distributed; this is why it is

important that condition (ii) allows for state variables to be arbitrary increasing functions of Normal random

variables. For instance, we may want to assume that the log price-dividend ratio is conditionally Normal, as

Campbell and Viceira do.

5Campbell and Viceira also allow for Epstein–Zin preferences, which will be handled separately below.

7



to ask what equity premium would be perceived by someone fully invested in the S&P 500.

(In contrast, it would be much less reasonable to assume that some investor holds all of his

wealth in gold, in order to estimate the expected return on gold.)

Nonetheless, it is desirable to accommodate the possibility that part of the investor’s

wealth is held in assets other than the equity index. The next example generalizes Example

3a to do so. It also generalizes in another direction, by allowing the driving random variables

to be non-Normal.

Example 3b. Modify Example 3a by assuming that only a fraction αt of wealth net of

consumption is invested in ‘the market’ (that is, in the equity index that is the focus of this

paper), with the remainder invested in some other asset or portfolio of assets that earns the

gross return R
(i)
T :

WT = αt(Wt − Ct)RT︸ ︷︷ ︸
market wealth, WM,T

+ (1− αt)(Wt − Ct)R(i)
T︸ ︷︷ ︸

other wealth, WN,T

.

Write θT = WM,T/WT for the ratio of market wealth to total wealth at time T ; let the signs

of state variables be chosen as before; and suppose that

(i) Risk aversion is sufficiently high: −WVWW/VW ≥ 1/θT at all levels of wealth W and

all values of the state variables.

(ii) RT , R
(i)
T , z1,T , . . . , zN,T are associated random variables.

Then the NCC holds for the market return.

Condition (i) shows that if, say, at least half of the investor’s time-T wealth is attributable

to the fraction invested in the market, θT ≥ 1/2, then the NCC holds so long as risk aversion

is at least two: we can allow the investor to be less than fully invested in the market, so long

as he cares more about the position he does have—that is, has higher risk aversion.

The concept of associated random variables (Esary, Proschan and Walkup (1967)) extends

the concept of nonnegative correlation in a manner that can be extended to the multivariate

setting. In particular, Normal random variables are associated if and only if they are non-

negatively correlated (Pitt (1982)); and increasing functions of associated random variables

are associated. Thus conditions (ii) and (iii) of Example 3a imply that the random variables

RT , z1,T , . . . , zN,T are associated, so that Example 3a is a special case of Example 3b.

The next example handles models, such as Wachter (2013), that are neither conditionally

lognormal nor feature investors with time-separable utility.

Example 4a. Suppose that there is a representative agent with Epstein–Zin (1989) pref-

erences. If (i) risk aversion γ ≥ 1 and elasticity of intertemporal substitution ψ ≥ 1, and (ii)
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the market return RT and wealth-consumption ratio WT/CT are associated, then the NCC

holds for the market return.

As special cases, condition (ii) would hold if, say, the log return logRT and log wealth-

consumption ratio logWT/CT are both Normal and nonnegatively correlated; or if the elastic-

ity of intertemporal substitution ψ = 1, since then the wealth-consumption ratio is constant

(and hence, trivially, associated with the market return). This second case covers Wachter’s

(2013) model with time-varying disaster risk.

Example 4b. If there is a representative investor with Epstein–Zin (1989) preferences,

with risk aversion γ = 1 and arbitrary elasticity of intertemporal substitution then the NCC

holds for the market return with equality. This case was considered (and not rejected) by

Epstein and Zin (1991) and Hansen and Jagannathan (1991).

2.2 Estimates of cov (MTRT , RT ) in linear factor models

We can also ask whether the NCC holds in linear factor models, in the style of Fama and

French (1996), that aim to account for the cross-sectional variation in average stock returns.

Consider a linear factor model of the SDF in the form

M = a1 + a2(R−Rf ) + a3SMB + a4HML, (5)

where the three factors are the excess returns on the market (R − Rf ), on ‘size’ (SMB),

and on ‘value’ (HML), as in Fama and French (1996). (Below, I also consider a linear

factor model including a momentum factor.) The coefficients a1, . . . , a4 are estimated using

GMM with 27 test assets: the riskless asset, the market, and 25 portfolios double-sorted on

size and book-to-market. Since there are 27 moment conditions, the coefficients a1, . . . , a4

are overidentified; I use the identity matrix to weight the moment conditions. (Appendix C

reports very similar results obtained with a two-stage approach in which the weighting matrix

is estimated in the first stage.) The data, which was downloaded from Kenneth French’s

website, is monthly, and runs from July 1926 until February 2014.

I report estimates for the full sample; for the pre-’63 sample (July 1926–December 1962);

for the post-’63 sample (January 1963–February 2014); and for the post-’96 sample (January

1996–February 2014), to check that the recent time period over which I have option data is

representative of the full sample.

The coefficient estimates are shown in the top half of Table 1, with standard errors in

parentheses. The time-series averages of the estimated SDF are 0.995 for the full sample;

0.996 for the pre-’63 sample; 0.995 for the post-’63 sample; and 0.996 for the post-’96 sample.
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The time-series standard deviations of the estimated SDF are 0.128 for the full sample; 0.097

for the pre-’63 sample; 0.225 for the post-’63 sample; and 0.182 for the post-’96 sample.

The bottom half of Table 1 adds a monthly momentum factor (MOM), so the SDF is

M = a1 + a2(R−Rf ) + a3SMB + a4HML+ a5MOM. (6)

The model is estimated as before, except that I now also include ten portfolios formed

monthly on momentum using NYSE prior (2-12) return decile breakpoints, for a total of 37

test assets. Again, all data is taken from Ken French’s website. Sample periods are almost

identical to the above analysis: the full sample is January 1927–December 2013; the pre-

’63 sample is January 1927–December 1962; the post-’63 sample is January 1963–December

2013; and the post-’96 sample is January 1996–December 2013.

The time-series averages of the estimated SDF are 0.995 for the full sample; 0.997 for

the pre-’63 sample; 0.995 for the post-’63 sample; and 0.996 for the post-’96 sample. The

presence of the momentum factor and portfolios increases time-series standard deviations of

the estimated SDF substantially, to 0.271 for the full sample; 0.261 for the pre-’63 sample;

0.310 for the post-’63 sample; and to 0.226 for the post-’96 sample.

Based on the estimated SDFs, the rightmost column of Table 1 shows sample estimates

of unconditional covariance, cov(MTRT , RT ),6 in each sample period and with and without

momentum; standard errors are in parentheses. The estimates are extremely stable across

different sample periods and hardly change when the momentum factor and portfolios are

included. Consistent with the NCC, the estimates are negative in every sample period and

in both tables. They are also close to zero in economic terms, and not significantly different

from zero in statistical terms, suggesting that the inequality (3) may be close to being tight.

3 Risk-neutral variance and the SVIX index

We now turn to the question of measuring the risk-neutral variance that appears on the right-

hand side of (3). The punchline will be that risk-neutral variance is uniquely pinned down

by European option prices, by a static no-arbitrage argument. To streamline the exposition,

I will temporarily assume that the prices of European call and put options expiring at time

T on the asset with return RT are perfectly observable at all strikes K; this unrealistic

assumption will be relaxed below.

Figure 1 plots a generic collection of time-t prices of calls expiring at time T with strike

K (written callt,T (K)) and of puts expiring at time T with strike K (written putt,T (K)).

6This is the unconditional expectation of covt(MTRT , RT ), because E [covt(MTRT , RT )] =

E
[
Et(MTR

2
T )− Et(MTRT )Et RT

]
= E(MTR

2
T )− E(MTRT )ERT = cov(MTRT , RT ).
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constant RM −Rf SMB HML — ĉov(MTRT , RT )

Full sample 1.013 −0.945 −0.324 −2.944 — −0.0016

(0.007) (0.649) (0.970) (0.871) — (0.0017)

Jul ’26–Dec ’62 1.009 −0.982 −0.002 −1.090 — −0.0020

(0.010) (0.942) (1.434) (1.433) — (0.0031)

Jan ’63–Feb ’14 1.045 −2.874 −2.587 −7.413 — −0.0019

(0.018) (1.137) (1.472) (1.607) — (0.0020)

Jan ’96–Feb ’14 1.028 −1.984 −3.000 −4.948 — −0.0015

(0.026) (1.735) (2.207) (2.350) — (0.0034)

constant RM −Rf SMB HML MOM ĉov(MTRT , RT )

Full sample 1.072 −2.375 −0.648 −5.489 −5.572 −0.0018

(0.020) (0.746) (1.011) (1.131) (1.033) (0.0020)

Jan ’27–Dec ’62 1.071 −2.355 −0.587 −3.882 −5.552 −0.0021

(0.029) (1.034) (1.747) (2.163) (1.565) (0.0041)

Jan ’63–Dec ’13 1.092 −3.922 −2.400 −9.020 −5.152 −0.0020

(0.029) (1.272) (1.475) (1.795) (1.427) (0.0022)

Jan ’96–Dec ’13 1.047 −3.231 −2.327 −5.789 −2.548 −0.0017

(0.034) (1.981) (2.224) (2.491) (1.637) (0.0036)

Table 1: Estimates of coefficients in the factor models (5) and (6), and of cov(MTRT , RT ).

Standard errors are in brackets.
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Ft,T
K

option prices

callt,T HKL put
t,T

HKL

Figure 1: The prices, at time t, of call and put options expiring at time T .

The figure illustrates two well-known facts that will be useful. First, call and put prices

are convex functions of strike, K. (Any non-convexity would provide a static arbitrage

opportunity.) This property will allow us, below, to deal with the issue that option prices

are only observable at a limited set of strikes. Second, the forward price of the underlying

asset, Ft,T , which satisfies

Ft,T = E∗t ST , (7)

can be determined by observing the strike at which call and put prices are equal, i.e., Ft,T is

the unique solution x of the equation callt,T (x) = putt,T (x). This fact follows from put-call

parity; it means that the forward price can be backed out from time-t option prices.

We want to measure 1
Rf,t

var∗t RT . I assume that the dividends earned between times t

and T are known at time t and paid at time T , so that

1

Rf,t

var∗t RT =
1

S2
t

[
1

Rf,t

E∗t S2
T −

1

Rf,t

(E∗t ST )2
]
. (8)

We can deal with the second term inside the square brackets using equation (7), so the

challenge is to calculate 1
Rf,t

E∗t S2
T . This is the price of the ‘squared contract’—that is, the

price of a claim to S2
T paid at time T .

How can we price this contract, given put and call prices as illustrated in Figure 1?

Suppose we buy two call options with a strike of K = 0.5; two calls with a strike of K = 1.5;

two calls with a strike of K = 2.5; two calls with a strike of K = 3.5; and so on, up to

arbitrarily high strikes. The payoffs on the individual options are shown as dashed lines in

Figure 2, and the payoff on the portfolio of options is shown as a solid line. The idealized

payoff S2
T is shown as a dotted line. The solid and dotted lines almost perfectly overlap,

illustrating that the payoff on the portfolio is almost exactly S2
T (and it is exactly S2

T at

integer values of ST ). Therefore, the price of the squared contract is approximately the price
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ST

1

4

9

16

payoff

Figure 2: The payoff S2
T (dotted line); and the payoff on a portfolio of options (solid line),

consisting of two calls with strike K = 0.5, two calls with K = 1.5, two calls with K = 2.5,

two calls with K = 3.5, and so on. Individual option payoffs are indicated by dashed lines.

of the portfolio of options:

1

Rf,t

E∗t S2
T ≈ 2

∑
K=0.5,1.5,...

callt,T (K). (9)

I show in the appendix that the squared contract can be priced exactly by replacing the sum

with an integral:
1

Rf,t

E∗t S2
T = 2

∫ ∞
K=0

callt,T (K) dK. (10)

In practice, of course, option prices are not observable at all strikes K, so we will need to

approximate the idealized integral (10) by a sum along the lines of (9). To see how this will

affect the results, notice that Figure 2 also demonstrates a subtler point: the option portfolio

payoff is not just equal to the ‘squared payoff’ at integers, it is tangent to it, so that the

payoff on the portfolio of options very closely approximates and is always less than or equal

to the ideal squared payoff. As a result, the sum over call prices in (9) will be slightly less

than the integral over call prices in (10). This implies that the bounds presented are robust

to the fact that option prices are not observable at all strikes: they would be even higher if

all strikes were observable. Section 4.1 expands on this point.

Finally, since deep-in-the-money call options are neither liquid in practice nor intuitive

to think about, it is convenient to split the range of integration into two and use put-call

parity to replace in-the-money call prices with out-of-the-money put prices. Doing so, and

substituting the result back into (8), we find that

1

Rf,t

var∗t RT =
2

S2
t

[∫ Ft,T

0

putt,T (K) dK +

∫ ∞
Ft,T

callt,T (K) dK

]
. (11)
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The expression in the square brackets is the shaded area shown in Figure 1.

The right-hand side of (11) is strongly reminiscent of the definition of the VIX index. To

bring out the connection it will be helpful to define an index, SVIXt, via the formula

SVIX2
t =

2

(T − t) ·Rf,t · S2
t

[∫ Ft,T

0

putt,T (K) dK +

∫ ∞
Ft,T

callt,T (K) dK

]
. (12)

The SVIX index measures the annualized risk-neutral variance of the realized excess return:

comparing equations (11) and (12), we see that

SVIX2
t =

1

T − t
var∗t (RT/Rf,t). (13)

4 A lower bound on the equity premium

We can summarize the results of previous sections by inserting (11) into inequality (3). This

gives a lower bound on the expected excess return of any asset that obeys the NCC:

EtRT −Rf,t ≥
2

S2
t

[∫ Ft,T

0

putt,T (K) dK +

∫ ∞
Ft,T

callt,T (K) dK

]
(14)

or, in terms of the SVIX index,

1

T − t
(EtRT −Rf,t) ≥ Rf,t · SVIX2

t . (15)

The bound will be applied in the case of the S&P 500; from now on, RT always refers

to the gross return on the S&P 500 index. I construct a time series of the lower bound

from January 4, 1996 to January 31, 2012 using option price data from OptionMetrics ;

Appendix B.1 contains full details of the procedure. I compute the bound for time horizons

T − t = 1, 2, 3, 6, and 12 months. I report results in annualized terms; that is, both sides of

the above inequality are multiplied by 1
T−t with t and T measured in years (so, for example,

monthly expected returns are multiplied by 12 to convert them into annualized terms).

Figure 3a plots the lower bound, annualized and in percentage points, at the 1-month

horizon. Figures 3b and 3c repeat the exercise at 3-month and 1-year horizons. Table 2

reports the mean, standard deviation, and various quantiles of the distribution of the lower

bound in the daily data for horizons between 1 month and 1 year.

The mean of the lower bound over the whole sample is 5.00% at the monthly horizon.

This number is strikingly close to typical estimates of the unconditional equity premium,

which supports the suggestion made in Section 2.2 that the bound may be fairly tight: that
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Figure 3: The lower bound on the annualized equity premium at different horizons (in %).

15



horizon mean s.d. min 1% 10% 25% 50% 75% 90% 99% max

1 mo 5.00 4.60 0.83 1.03 1.54 2.44 3.91 5.74 8.98 25.7 55.0

2 mo 5.00 3.99 1.01 1.20 1.65 2.61 4.11 5.91 8.54 23.5 46.1

3 mo 4.96 3.60 1.07 1.29 1.75 2.69 4.24 5.95 8.17 21.4 39.1

6 mo 4.89 2.97 1.30 1.53 1.95 2.88 4.39 6.00 7.69 16.9 29.0

1 yr 4.64 2.43 1.47 1.64 2.07 2.81 4.35 5.72 7.19 13.9 21.5

Table 2: Mean, standard deviation, and quantiles of the lower bound on the equity premium,

Rf,t · SVIX2
t , at various horizons (annualized and measured in %).

is, it seems that the inequality (14) may approximately hold with equality. Below, I provide

further tests of this possibility and develop some of its implications.

The time-series average of the lower bound is lower at the annual horizon than it is at

the monthly horizon where the data quality is best (perhaps because of the existence of

trades related to VIX, which is itself a monthly index). It is likely that this reflects a less

liquid market in 1-year options, with a smaller range of strikes traded, rather than a genuine

phenomenon. I discuss this further in Section 4.1 below.

The lower bound is volatile and right-skewed. At the annual horizon the equity premium

varies from a minimum of 1.22% to a maximum of 21.5% over my sample period. But

variation at the one-year horizon masks even more dramatic variation over shorter horizons.

The monthly lower bound averaged only 1.86% (annualized) during the “Great Moderation”

years 2004–2006, but peaked at 55.0%—more than 10 standard deviations above the mean—

in November 2008, at the height of the subprime crisis. Indeed, the lower bound hit peaks

at all horizons during the recent crisis, notably from late 2008 to early 2009 as the credit

crisis gathered steam and the stock market fell, but also around May 2010, coinciding with

the beginning of the European sovereign debt crisis. Other peaks occur during the LTCM

crisis in late 1998; during the days following September 11, 2001; and during a period in late

2002 when the stock market was hitting new lows following the end of the dotcom boom.

Interestingly, the bound was also relatively high from late 1998 until the end of 1999; by

contrast, forecasts based on market dividend- and earnings-price ratios predicted (incorrectly,

as it turned out) a low or even negative one-year equity premium during this period, as noted

by Ang and Bekaert (2007) and Goyal and Welch (2008). The lower bound also has the

appealing property that, by construction, it can never be less than zero. Most important,

the out-of-sample issues emphasized by Goyal and Welch (2008) do not apply here, since no

parameter estimation is required to generate the lower bounds.
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Figure 11, in the appendix, shows daily volume and open interest in S&P 500 index

options. There has been an increase in volume and in open interest over the sample period.

The peaks in SVIX in 2008, 2010, and 2011 are associated with spikes in volume.

4.1 Robustness of the lower bound

Were option markets illiquid during the subprime crisis? One potential concern is that

option markets may have been illiquid during periods of extreme stress. If illiquidity was

a significant concern, one might expect to see a significant disparity between bounds based

on mid-market option prices, such as those shown in Figure 3, and bounds based on bid or

offer prices, particularly in periods such as November 2008. Thus it is possible in principle

that the lower bounds would decrease significantly if bid prices were used. Figure 12, in the

appendix, plots bounds calculated from bid prices. Reassuringly, the results are very similar:

the lower bound is high at all horizons whether mid or bid prices are used.

Option prices are only observable at a discrete range of strikes. Two issues arise when

implementing the lower bound. Fortunately, both issues mean that the numbers presented

in this paper are conservative: with ideal data, the lower bound would be even higher. Here

I only provide a brief discussion; full details and proofs are in Appendix B.2.

First, we do not observe option prices at all strikes K between 0 and ∞. This means

that the range of integration in the integral we would ideally like to compute—the shaded

area in Figure 1—is truncated. Obviously, this will cause us to underestimate the integral

in practice. This effect is likely to be strongest at the 1-year horizon, because 1-year options

are less liquid than shorter-dated options.

Second, even within the range of observable strikes, prices are only available at a discrete

set of strikes. Thus the idealized lower bound that emerges from the theory in the form of

an integral (over option prices at all strikes) must be approximated by a sum (over option

prices at observable strikes). To get some intuition for the effect this will have, look again

at Figure 1. Notice that the payoff on the option portfolio is not only equal to S2
T at integer

values of ST , it is tangent to the curve S2
T at integer values of ST . This means that the

solid line (payoff on the approximating option portfolio) is always at or below the dotted

line (payoff on the ideal squared contract), so we can sign the approximation error: the price

of the portfolio of options will be slightly less than the price of the squared contract. Again,

practical implementation will lead to underestimates, so that the lower bound would be even

higher if perfect data were available.
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5 Might the lower bound be tight?

Two facts make it reasonable to ask whether the lower bound might in fact be tight. First,

the results of Section 2.2 yielded estimates of the covariance term cov(MTRT , RT ) that

are statistically and economically close to zero. Second, the time-series average of the lower

bound in recent data is approximately 5% in annualized terms, a number close to conventional

estimates of the equity premium. Over the period 1951–2000, Fama and French (2002)

estimate the unconditional average equity premium to be 3.83% or 4.78%, based on dividend

and earnings growth respectively.7

We therefore want to test the hypothesis that 1
T−t (EtRT −Rf,t) = Rf,t · SVIX2

t . Table 3

shows the results of regressions

1

T − t
(RT −Rf,t) = α + β ×Rf,t · SVIX2

t + εT , (16)

together with robust Hansen–Hodrick standard errors that account for heteroskedasticity

and overlapping observations. The null hypothesis that α = 0 and β = 1 is not rejected at

any horizon. The point estimates on β are close to 1 at all horizons, lending further support

to the possibility that the lower bound is tight. This is encouraging because, as Goyal and

Welch (2008) emphasize, this period is one in which conventional predictive regressions fare

poorly.

horizon α̂ s.e. β̂ s.e. R2 R2
OS

1 mo 0.012 [0.064] 0.779 [1.386] 0.34% 0.42%

2 mo −0.002 [0.068] 0.993 [1.458] 0.86% 1.11%

3 mo −0.003 [0.075] 1.013 [1.631] 1.10% 1.49%

6 mo −0.056 [0.058] 2.104 [0.855] 5.72% 4.86%

1 yr −0.029 [0.093] 1.665 [1.263] 4.20% 4.73%

Table 3: Coefficient estimates for the regression (16).

We now have seen from various different angles that the lower bound (14) appears to be

approximately tight. Most directly, as shown in Table 2 and Figure 3, the average level of the

lower bound over my sample is close to conventional estimates of the unconditional average

7These are the ‘bias-adjusted’ figures presented in their Table IV. In an interview with Richard Roll

available on the AFA website at http://www.afajof.org/details/video/2870921/Eugene-Fama-Interview.html,

Eugene Fama says, “I always think of the number, the equity premium, as five per cent.”
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equity premium. In the forecasting regression (16), I do not reject the null hypothesis that

α = 0 and β = 1 at any horizon; see Table 3. Finally, the direct estimates of cov(MTRT , RT )

in a linear factor model setting, shown in Table 1, are statistically and economically close to

zero.

These observations suggest that SVIX can be used as a measure of the equity premium

without estimating any parameters—that is, imposing α = 0, β = 1 in (16), so that

1

T − t
(EtRT −Rf,t) = Rf,t · SVIX2

t . (17)

To assess the performance of the forecast (17), I follow Goyal and Welch (2008) in computing

an out-of-sample R-squared measure

R2
OS = 1−

∑
ε2t∑
ν2t
, (18)

where εt is the error when SVIX (more precisely, Rf,t · SVIX2
t ) is used to forecast the equity

premium and νt is the error when the historical mean equity premium (computed on a rolling

basis) is used to forecast the equity premium.8

The rightmost column of Table 3 reports the values of R2
OS at each horizon. These out-

of-sample R2
OS values can be compared with corresponding numbers for forecasts based on

valuation ratios, which are the subject of a vast literature.9 Goyal and Welch (2008) consider

return predictions in the form

equity premiumt = a1 + a2 × predictor variablet , (19)

where a1 and a2 are constants estimated from the data, and argue that while conventional

predictor variables perform reasonably well in-sample, they perform worse out-of-sample

than the rolling mean. Over their full sample (which runs from 1871 to 2005, with the

first 20 years used to initialize estimates of a1 and a2, so that predictions start in 1891),

the dividend-price ratio, dividend yield, earnings-price ratio, and book-to-market ratio have

negative out-of-sample R2s of −2.06%, −1.93%, −1.78% and −1.72%, respectively. The

performance of these predictors is particularly poor over Goyal and Welch’s ‘recent sample’

(1976 to 2005), with R2s of −15.14%, −20.79%, −5.98% and −29.31%, respectively.10

8More detail on the construction of the rolling mean is provided in the appendix.

9Among many others, Campbell and Shiller (1988), Fama and French (1988), Lettau and Ludvigson

(2001), and Cochrane (2008) make the case for predictability. Other authors, including Ang and Bekaert

(2007), make the case against.

10Goyal and Welch show that the performance of an out-of-sample version of Lettau and Ludvigson’s

(2001) cay variable is similarly poor, with R̃2 of −4.33% over the full sample and −12.39% over the recent

sample.
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Campbell and Thompson (2008) confirm Goyal and Welch’s finding, and respond by

suggesting that the coefficients a1 and a2 be fixed based on a priori considerations. Motivated

by the Gordon growth model D/P = R −G (where D/P is the dividend-price ratio, R the

expected return, and G expected dividend growth), Campbell and Thompson suggest making

forecasts of the form

equity premiumt = dividend-price ratiot + dividend growtht − real interest ratet

or, more generally,

equity premiumt = valuation ratiot + dividend growtht − real interest ratet, (20)

where in addition to the dividend-price ratio, Campbell and Thompson also use earnings

yields, smoothed earnings yields, and book-to-market as valuation ratios.11 Since these

forecasts are drawn directly from the data without requiring estimation of coefficients, they

are a natural point of comparison for the forecast (17) suggested in this paper.

Over the full sample, the out-of-sample R2s corresponding to the forecasts (20) range

from 0.24% (using book-to-market as the valuation ratio) to 0.52% (using smoothed earn-

ings yield) in monthly data; and from 1.85% (earnings yield) to 3.22% (smoothed earnings

yield) in annual data.12 The results are worse over Campbell and Thompson’s most recent

subsample, from 1980–2005: in monthly data, R2 ranges from −0.27% (book-to-market)

to 0.03% (earnings yield). In annual data, the forecasts do even more poorly, each under-

performing the historical mean, with R2s ranging from −6.20% (book-to-market) to −0.47%

(smoothed earnings yield).

In relative terms, therefore, the out-of-sample R-squareds shown in Table 3 compare very

favorably with the corresponding R-squareds for predictions based on valuation ratios over

a similar period. But in absolute terms, are they too small to be interesting? No. Ross

(2005, pp. 54–57) and Campbell and Thompson (2008) point out that high R2 statistics

in predictive regressions translate into high attainable Sharpe ratios, for the simple reason

that the predictions can be used to formulate a market-timing trading strategy; and if the

predictions are very good, the strategy will perform extremely well. If Sharpe ratios above

some level are ‘too good to be true,’ then one should not expect to see R2s from predictive

regressions above some upper limit.

11The real interest rate is subtracted because dividend growth is measured in real, rather than nominal,

units. Campbell and Thompson report similar results with and without the dividend growth term, and with

and without real interest rate adjustments.

12Out-of-sample forecasts are made from 1927 to 2005, or 1956 to 2005 when book-to-market is used.
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Figure 4: Cumulative returns on $1 invested in cash, in the S&P 500 index, or in a market-

timing strategy whose allocation to the market is proportional to Rf,t · SVIX2
t . Log scale.

With this thought in mind, consider using risk-neutral variance as a market-timing signal:

invest, each day, a fraction αt in the S&P 500 index and the remaining fraction 1 − αt at

the riskless rate, where αt is chosen proportional to 1-month SVIX2 (scaled by the riskless

rate, as on the right-hand side of (15)). The constant of proportionality has no effect on the

strategy’s Sharpe ratio, so I choose it such that the market-timing strategy’s mean portfolio

weight in the S&P 500 is 35%, with the remaining 65% in cash. The resulting median

portfolio weight is 27% in the S&P 500, with 73% in cash. Figure 4 plots the cumulative

return on an initial investment of $1 in this market-timing strategy and, for comparison,

on strategies that invest in the short-term interest rate or in the S&P 500 index. In my

sample period, the daily Sharpe ratio of the market is 1.35%, while the daily Sharpe ratio of

the market-timing strategy is 1.97%; in other words, the R2 of 0.42% reported in Table 3 is

enough to deliver a 45% increase in Sharpe ratio for the market-timing strategy relative to

the market itself. This exercise also illustrates an attractive feature of risk-neutral variance

as a predictive variable: since it is an asset price—specifically, the price of a portfolio of

options—it can be computed in daily data, or at even higher frequency, and so permits

high-frequency market-timing strategies to be considered.

Valuation ratios and SVIX also tell qualitatively very different stories about the equity

premium. Figure 5 plots the 1-year forecast Rf,t · SVIX2
t on the same axes as the Campbell–

Thompson smoothed earnings yield predictor.13 The figure makes two things clear. First,

13I thank John Campbell for sharing an updated version of the dataset used in Campbell and Thompson

(2008).
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Figure 5: Equity premium forecasts based on Campbell–Thompson (2008) and on SVIX.

option prices point toward a far more volatile equity premium than do valuation ratios.

Second, SVIX is much less persistent than are valuation ratios, and so the SVIX predictor

variable is less subject to Stambaugh (1999) bias.

But perhaps the most striking aspect of the figure is the behavior of the Campbell–

Thompson predictor variable on Black Monday, October 19, 1987. This was by far the worst

day in stock market history: the S&P 500 index dropped by over 20%—more than twice

as far as on the second-worst day in history—and yet the valuation-ratio approach suggests

that the equity premium barely responded. In sharp contrast, option prices exploded on

Black Monday, implying an equity premium higher than that of November 2008.14 As it

turned out, the annualized return on the S&P 500 index was 81.2% over the month, and

23.2% over the year, following Black Monday.

6 Two decompositions of the equity premium

The previous section argued that the equity premium lower bound is approximately tight.

The next two subsections operate on the assumption that we can, indeed, use the SVIX

index to measure the equity premium, and use this fact to decompose the equity premium

in two ways: first, over time, splitting a long-horizon equity premium into a short-horizon

premium plus ‘forward premia’; and second, by showing how the equity premium can be

broken into an ‘up-premium’ plus a ‘down-premium.’

14Figure 13, in the appendix, plots the time series of VXO, that is, 1-month at-the-money implied volatility

on the S&P 100 index. The VIX index itself does not go back as far as 1987.
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6.1 The term structure of the equity premium

Figure 3c shows that the 1-year equity premium was elevated during late 2008; and Figures

3a and 3b suggest that a large part of that high equity premium was expected to materialize

over the first few months of the 12-month period.

To make this more formal, define the annualized forward equity premium from T1 to T2

(which is known at time t) by the formula

EPT1→T2 ≡
1

T2 − T1

(
log

EtRt→T2
Rf,t→T2

− log
EtRt→T1
Rf,t→T1

)
; (21)

and the corresponding (‘spot’) equity premium from time t to time T by15

EPt→T ≡
1

T − t
log

EtRt→T

Rf,t→T
.

Assuming (as argued above) that the equity premium lower bound is tight, we can use (17)

to substitute out for EtRt→T1 and EtRt→T2 in (21), and write

EPT1→T2 =
1

T2 − T1
log

1 + SVIX2
t→T2(T2 − t)

1 + SVIX2
t→T1(T1 − t)

and EPt→T =
1

T − t
log
(
1 + SVIX2

t→T (T − t)
)
.

I have slightly modified previous notation to accommodate the extra time dimension; for

example, Rt→T2 is the simple return on the market from time t to time T2, Rf,t→T1 is the

riskless return from time t to time T1, and SVIX2
t→T2 is the time-t level of the SVIX index

calculated using options expiring at T2.

The definition (21) is chosen so that we have, for arbitrary T1, . . . , TN , the decomposition

EPt→TN =
T1 − t
TN − t

EPt→T1 +
T2 − T1
TN − t

EPT1→T2 + · · ·+ TN − TN−1
TN − t

EPTN−1→TN (22)

which expresses the long-horizon equity premium EPt→TN as a weighted average of forward

equity premia, exactly analogous to the relationship between spot and forward bond yields.

Figure 6 shows how the annual equity premium (top line) previously plotted in Figure

3c decomposes into a one-month spot premium (bottom line) and forward premia from one

to two (second line from bottom), two to three, three to six, and six to twelve (second line

from top) months. The figure stacks the unannualized forward premia—terms of the form

(Tn−Tn−1)/(TN−t)EPTn−1→Tn—which add up to the annual equity premium, as in (22). For

example, on any given date t, the gap between the top two lines indicates the contribution

15This is arguably a more natural definition of the spot equity premium than the (conventional) definition

used elsewhere in the paper, 1
T−t (Et Rt→T −Rf,t→T ).
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Figure 6: The term structure of equity premia. 10-day moving average.

of the unannualized 6-month-6-month-forward equity premium, 1
2
EPt+6mo→t+12mo, to the

annual equity premium, EPt→t+12mo.

The figure reveals that in ‘normal’ times, the unannualized 6-month-6-month-forward

equity premium contributes approximately half of the annual equity premium, as might

have been expected. But more interestingly, it also shows that at times of stress, much

of the annual equity premium is compressed into the first few months. For example, in

November 2008 when the annual equity premium reached its peak over this sample period,

about a third of the expected equity premium over the entire year from November 2008 to

November 2009 can be attributed to the expected (unannualized) equity premium over the

two months from November 2008 to January 2009.

6.2 The up-premium and the down-premium

Previous sections have argued for SVIX2 as a measure of the equity premium:

EtRT −Rf,t =
2

S2
t

[∫ Ft,T

0

putt,T (K) dK +

∫ ∞
Ft,T

callt,T (K) dK

]
.

It is natural to consider separating SVIX2 into two separate components, and to ask:

what do
2

S2
t

∫ Ft,T

0

putt,T (K) dK and
2

S2
t

∫ ∞
Ft,T

callt,T (K) dK measure?

It turns out that these two terms, which I will call down-SVIX2 and up-SVIX2 respec-

tively, can be given a nice interpretation. To do so, it will be convenient to think from the
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perspective of an investor with log utility who chooses to hold the market. Such an investor

must therefore perceive the market as growth-optimal; thus, writing Ê for the investor’s

expectations, we must have ÊtRi,T/RT = 1 for any asset return Ri,T . The investor’s beliefs

must be consistent with the prices of traded assets, so for any time-T payoff XT , we must

have

time-t price of a claim to XT =
1

Rf,t

E∗t XT = Êt
XT

RT

.

Applying this in the case XT = YTRT , it follows that

Êt YT =
1

Rf,t

E∗t (YTRT ) = price of a claim to YTRT . (23)

This logic applies so long as the claim YTRT can be replicated and hence priced. When this

is the case, equation (23) shows how to calculate the log investor’s expectations of YT .

As a first example, if YT = 1 {RT > Rf,t} then the payoff YTRT can be replicated by a

combination of an at-the-money-forward digital (or binary) call and a conventional at-the-

money-forward call option. The prices of each can be inferred given a range of strikes of

vanilla options. More precisely, we have

P̂t (RT > Rf,t) = Êt (1 {RT > Rf,t}) = −Rf,t call′t,T (Ft,T )︸ ︷︷ ︸
P∗
t (RT>Rf,t)

+
callt,T (Ft,T )

St
. (24)

The probability of an up-move perceived by a log investor equals the risk-neutral probability

(i.e., the probability that would have to be perceived, in equilibrium, by a notional risk-

neutral investor) plus a second, positive, term: callt,T (Ft,T )/St.

Correspondingly, with YT = (RT−Rf,t)1 {RT > Rf,t} and YT = (RT−Rf,t)1 {RT < Rf,t},
we have

1

T − t
Êt [(RT −Rf,t)1 {RT > Rf,t}] =

Rf,t

(T − t)St
callt,T (Ft,T )︸ ︷︷ ︸

1
T−t

E∗
t [(RT−Rf,t)1{RT>Rf,t}]

+Rf,t up-SVIX2
t (25)

1

T − t
Êt [(RT −Rf,t)1 {RT < Rf,t}] = − Rf,t

(T − t)St
callt,T (Ft,T )︸ ︷︷ ︸

1
T−t

E∗
t [(RT−Rf,t)1{RT<Rf,t}]

+Rf,t down-SVIX2
t(26)

The up-premium 1
T−t Êt [RT −Rf,t | RT > Rf,t] therefore equals the right-hand side of

(25) divided by the right-hand side of (24); the down-premium 1
T−t Êt [RT −Rf,t | RT < Rf,t]

can be calculated similarly. If we add equations (25) and (26), we recover

1

T − t
Êt (RT −Rf,t) = Rf,t SVIX2

t .
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This reflects the fact that under the log investor’s expectations, the covariance term in (2)

equals zero. (Note, however, that it is not necessary for there to be a log investor for the

covariance term to equal zero, and hence for the lower bound to be tight.)

2000 2005 2010
0.50

0.55

0.60

0.65

0.70

(a) 1 month

2000 2005 2010
0.50

0.55

0.60

0.65

0.70

(b) 1 year

Figure 7: Log investor’s perceived probability of an up-move, P̂ (RT > Rf,T ).

Figure 7 plots the log investor’s perceived probability of an up-move at horizons T =

1 month and T = 1 year. Figure 8 plots the up-premium and down-premium over the

same horizons; the sign on the down-premium is flipped in both panels so that the up- and

down-premium can be easily compared.

Table 4 compares November 1998 with November 2008. Both were times when the

equity premium, as measured by option prices, was high; when the probability of an up-

move was high; and when the up-premium was high. The main distinction between the two
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Figure 8: Black: The ‘up-premium’ Ê (RT −Rf,T | RT > Rf,T ). Red: the ‘down-premium’

Ê (RT −Rf,T | RT < Rf,T ) (sign flipped).
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is that the down-premium was strikingly large in absolute value in November 1998. The

late 1990s and early 2000s is the only period in my sample in which the equity premium

was larger in magnitude conditional on a down-move than on an up-move, suggesting that

sophisticated market participants were bullish, but appreciated that a major sell-off was

possible (consistent with the findings of Brunnermeier and Nagel (2004)).

11/98 11/08

Êt (RT −Rf,t) 11% 18%

P̂t (up-move) 65% 67%

Êt (RT −Rf,t | up-move) 33% 38%

Êt (RT −Rf,t | down-move) −35% −24%

Table 4: A comparison of November 1998 and November 2008. T = one-year horizon.

7 Conclusion

The starting point of this paper is a new identity that expresses the equity premium as a

risk-neutral variance term (which can be directly observed via a volatility index, SVIX, that

is somewhat similar to the VIX index) minus a covariance term. I show that the covariance

term is negative in all mainstream macro-finance models; and I confirm this finding directly

by estimating a linear factor model in the style of Fama and French (1996). The SVIX index

is therefore a lower bound on the equity premium.

I construct the SVIX index using S&P 500 index option data from 1996 to 2012. The

index is strikingly volatile; it implies that in late 2008, the equity premium rose above 20% at

the 1-year horizon and above 55% (annualized) at the 1-month horizon. More aggressively,

I argue that the lower bound is approximately tight—that is, the SVIX index is not merely

a lower bound on the equity premium, it is approximately equal to the equity premium.

In several respects, the SVIX index points to a very different view of the equity premium

relative to the conventional view in the literature. First, it suggests that the equity premium

is far more volatile than implied by the valuation-ratio predictors of Campbell and Thompson

(2008). The distinction between the two views is sharpest on days such as Black Monday,

in 1987, when the S&P 500 experienced a very severe decline, with a daily return on the

order of twice as negative as the next-worst day in history. On the Campbell–Thompson

view of the world, the equity premium rose on the order of two or three percentage points

during this episode. In contrast, option prices are known to have exploded on Black Monday,
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which I argue implies also that the equity premium exploded. Second, this volatility often

reflects movements in the equity premium at weekly, daily, or even higher frequency. The

macro-finance literature, which seeks to rationalize market gyrations at the business cycle

frequency, typically has not even attempted to address such movements. Third, the equity

premium is strongly right-skewed: the median equity premium is on the order of 3 or 4%,

but occasional short-lived opportunities for unconstrained investors to earn much higher

conditional premia result in an unconditional mean equity premium of around 5%.
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A The negative correlation condition

This section contains proofs that the examples in Section 2 satisfy the negative correlation

condition (NCC).

Example 1. Write MT = e−rf,t+σM,tZM,T−σ2
M,t/2 and RT = eµR,t+σR,tZR,T−σ2

R,t/2, where ZM,T

and ZR,T are (potentially correlated) standard Normal random variables. Define λt = (µR,t−
rf,t)/σR,t to be the Sharpe ratio conditional on time-t information. Some straightforward

algebra shows that EtMTR
2
T ≤ EtRT if and only if λt ≥ σR,t.
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Example 2. By assumption, there is an investor with wealth Wt and utility function u(·)
who chooses, at time t, from the available menu of assets with returns R

(i)
T , i = 1, 2, . . .. In

other words, he chooses portfolio weights {wi} to solve the problem

max
{wi}

Et u

[
Wt

(∑
i

wiR
(i)
T

)]
subject to

∑
i

wi = 1. (27)

The first-order condition for (say) wj is that

Et

[
Wtu

′

(
Wt

∑
i

wiR
(i)
T

)
R

(j)
T

]
= λt,

where λt > 0 is the Lagrange multiplier associated with the constraint in (27). Since the

investor chooses to hold the market, we have
∑

iwiR
(i)
T = RT . Thus,

Et

Wt

λt
u′ (WtRT )︸ ︷︷ ︸
MT

R
(j)
T

 = 1

for any return R
(j)
T . It follows that the SDF is proportional (with a constant of proportionality

that is known at time t) to u′(WtRT ).

To show that the NCC holds, we must show that covt(u
′(WtRT )RT , RT ) ≤ 0. This holds

because u′(WtRT )RT is decreasing in RT : its derivative is u′(WtRT ) + WtRTu
′′(WtRT ) =

−u′(WtRT ) [γ(WtRT )− 1], which is negative because risk aversion γ(x) ≡ −xu′′(x)/u′(x) is

at least one.

Examples 3a and 3b. For reasons given in the text, Example 3a is a special case of

Example 3b, which we now prove. We must check that covt(MTRT , RT ) ≤ 0, or equivalently

that

covt(−RTVW (WT , z1,T , . . . , zN,T ), RT ) ≥ 0. (28)

That is, we must prove that the covariance of two functions of RT , R
(i)
T , z1,T , . . . , zN,T is

positive. The two functions are

f(RT , R
(i)
T , z1,T , . . . , zN,T ) = −RTVW (αt(Wt − Ct)RT + (1− αt)(Wt − Ct)R(i)

T , z1,T , . . . , zN,T )

(29)

and

g(RT , R
(i)
T , z1,T , . . . , zN,T ) = RT .

(Since the covariance is conditional on time-t information, αt and (Wt − Ct) can be treated

as known constants.) By the defining property of associated random variables, (28) holds so
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long as f and g are each weakly increasing functions of their arguments. This is obviously

true for g, so it only remains to check that the first derivatives of f are all nonnegative.

Differentiating (29) with respect to RT , we need −VW (WT , z1,T , . . . , zN,T ) − αt(Wt −
Ct)RTVWW (WT , z1,T , . . . , zN,T ) ≥ 0, or equivalently

−WTVWW (WT , z1,T , . . . , zN,T )

VW (WT , z1,T , . . . , zN,T )
≥ WT

WM,T

,

where WT and WM,T are as given in the main text. This is the constraint on risk aversion.

Differentiating (29) with respect toR
(i)
T , we need−RT (1−αt)(Wt−Ct)VWW (WT , z1,T , . . . , zN,T ) ≥

0, which follows because VWW < 0.

Differentiating (29) with respect to zj,T , we need −RTVWj(WT , z1,T , . . . , zN,T ) ≥ 0, which

follows because VWj (the cross derivative of the value function with respect to wealth and

the jth state variable) is weakly negative due to the choice of sign on the state variables.

Examples 4a and 4b. With Epstein–Zin preferences, the SDF is proportional (up to quan-

tities known at time t) to (WT/CT )(γ−1)/(1−ψ)R−γT , so the desired inequality, covt(MTRT , RT ) ≤
0, is equivalent to

covt

[
−
(
WT

CT

)(γ−1)/(1−ψ)

R1−γ
T , RT

]
≥ 0.

If γ = 1, as in Example 4b, then this holds with equality.

If WT/CT and RT are associated, as assumed in Example 4a, then we need to check the

first derivatives of

f(x, y) = −x(γ−1)/(1−ψ)y1−γ

to be nonnegative. That is, we need γ ≥ 1 and ψ ≥ 1, as claimed.

B Calculating risk-neutral variance

Note that for any x, we have

x2 = 2

∫ ∞
0

max {0, x−K} dK.

Setting x = ST , taking risk-neutral expectations, and multiplying by 1
Rf,t

,

1

Rf,t

E∗t S2
T = 2

∫ ∞
0

1

Rf,t

E∗t max {0, ST −K} dK

= 2

∫ ∞
0

callt,T (K) dK. (30)
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Using equations (7), (8), and (30), the risk-neutral variance can be calculated from ob-

servable prices:
1

Rf,t

var∗t RT =
1

S2
t

[
2

∫ ∞
0

callt,T (K) dK −
F 2
t,T

Rf,t

]
. (31)

This expression incorporates the prices of in-the-money calls, which are usually illiquid. But

by put-call parity, callt,T (K) = putt,T (K) + 1
Rf,t

(Ft,T −K), so∫ ∞
0

callt,T (K) dK =

∫ Ft,T

0

callt,T (K) dK +

∫ ∞
Ft,T

callt,T (K) dK

=

∫ Ft,T

0

putt,T (K) +
1

Rf,t

(Ft,T −K) dK +

∫ ∞
Ft,T

callt,T (K) dK

=

∫ Ft,T

0

putt,T (K) dK +
F 2
t,T

2Rf,t

+

∫ ∞
Ft,T

callt,T (K) dK.

Substituting this into (31), we have the formula (11) for risk-neutral variance:

1

Rf,t

var∗t RT =
2

S2
t

[∫ Ft,T

0

putt,T (K) dK +

∫ ∞
Ft,T

callt,T (K) dK

]
.

B.1 Construction of the lower bound

The data are from OptionMetrics, runnning from January 4, 1996, to January 31, 2012; they

include the closing price of the S&P 500 index, and the expiration date, strike price, highest

closing bid and lowest closing ask of all call and put options with fewer than 550 days to

expiry. I clean the data in several ways. First, I delete all replicated entries (of which there

are more than 500,000). Second, for each strike, I select the option—call or put—whose

mid price is lower. Third, I delete all options with a highest closing bid of zero. Finally, I

delete all Quarterly options, which tend to be less liquid than regular S&P 500 index options

and to have a smaller range of strikes. Having done so, I am left with 1,165,585 option-day

datapoints. I compute mid-market option prices by averaging the highest closing bid and

lowest closing ask, and using the resulting prices to compute the lower bound by discretizing

the right-hand side of inequality (14).

On any given day, I compute the lower bound at a range of time horizons depending on the

particular expiration dates of options traded on that day, with the constraint that the shortest

time to expiry is never allowed to be less than 7 days; this is the same procedure that the

CBOE follows. I then calculate the implied bound for T = 30, 60, 90, 180, and 360 days by

linear interpolation. Occasionally, extrapolation is necessary, for example when the nearest-

term option’s time-to-maturity first dips below 7 days, requiring me to use the two expiry

dates further out; again, this is the procedure followed by the CBOE.
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B.2 The effect of discrete strikes

The integrals that appear throughout the paper are idealizations: in practice we only observe

options at some finite set of strikes. Write Ωt,T (K) for the price of an out-of-the-money option

with strike K, that is,

Ωt,T (K) ≡


putt,T (K) if K < Ft,T

callt,T (K) if K ≥ Ft,T

;

write K1, . . . , KN for the strikes of observable options; write Kj for the strike that is nearest

to the forward price Ft,T ;16 and define ∆Ki ≡ (Ki+1 −Ki−1)/2. Then the idealized integral∫∞
0

Ωt,T (K) dK is replaced, in practice, by the observable sum
∑N

i=1 Ωt,T (Ki) ∆Ki. (This is

the CBOE’s procedure in calculating VIX, and I follow it in this paper.) Figure 9a illustrates.

The question is, how well does the sum approximate the integral? The next result shows

that there are two forces pushing in the direction of underestimation (of the integral by

the sum) and one pushing in the direction of overestimation. But the latter effect is very

minor in practice, so one should think of discretization as leading to underestimation of the

integral.

Result 1 (The effect of discretization by strike). Discretizing by strike will tend to lead to

an underestimate of the idealized lower bound, in that

2

(T − t)Rf,tS2
t

N∑
i=1

Ωt,T (Ki) ∆Ki︸ ︷︷ ︸
discretization

≤ 2

(T − t)Rf,tS2
t

∫ ∞
0

Ωt,T (K) dK︸ ︷︷ ︸
idealized lower bound

+
(∆Kj)

2

4(T − t) ·R2
f,t · S2

t︸ ︷︷ ︸
very small

.

Proof. Non-observability of deep-out-of-the-money options obviously leads to an underesti-

mate of the lower bound.

Consider, first, the out-of-the-money puts with strikes K1, . . . , Kj−1. The situation is

illustrated in Figure 9b: by convexity of putt,T (K), the light grey areas that are included

(when they should be excluded) are smaller than the dark grey areas that are excluded (when

they should be included). The same logic applies to the out-of-the-money calls with strikes

Kj+1, Kj+2, . . .. Thus the observable options—excluding the nearest-the-money option—will

always underestimate the part of the integral which they are intended to approximate.

16For simplicity, I assume that strikes are evenly spaced near-the-money, Kj+1 −Kj = Kj −Kj−1. This

is not essential, but it is almost always the case in practice and lets me economize slightly on notation.
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Figure 9: The effect of discretization. Different panels use different scales.

It remains to consider the nearest-the-money option with strike Kj, which alone can

lead to an overestimate. Lemma 1, below, shows that the worst case is if the strike of the

nearest-the-money option happens to be exactly equal to the forward price Ft,T , as in Figure

9c. For an upper bound on the overestimate in this case we must find an upper bound on

the sum of the approximately triangular areas (x) and (y) that are shown in the figure. We

can do so by replacing the curved lines in the figure by the (dashed) tangents to putt,T (K)

and callt,T (K) at K = Ft,T . The areas of the resulting triangles provide the desired upper

bound, by convexity of putt,T (K) and callt,T (K): we have

area (x) + area (y) ≤ 1

2

(
∆K

2

)2

put′t,T (K)− 1

2

(
∆K

2

)2

call′t,T (K).

But, by put-call parity, put′t,T (K)− call′t,T (K) = 1/Rf,t. Thus, the overestimate due to the

at-the-money option is at most
1

2

(
∆K

2

)2
1

Rf,t

.
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Since the contributions from out-of-the-money and missing options led to underestimates,

the overall overestimate is at most this amount. Finally, since the definition scales the

integral by 2/((T − t)Rf,tS
2
t ), the result follows.

The maximal overestimate provided by this result is extremely small : for the S&P 500

index, the interval between strikes near-the-money is ∆Kj = 5. If, say, the forward price of

the S&P 500 index is Ft,T = 1000 and we are considering a monthly horizon, T − t = 1/12,

then the discretization leads to an overestimate of SVIX2 that is at most 7.5×10−5 < 0.0001.

By comparison, the average level of SVIX2 is on the order of 0.05, as shown in Table 2.

Since the non-observability of deep-out-of-the-money options causes underestimation, there

is therefore a very strong presumption that the sum underestimates the integral.

It only remains to establish the following lemma, which is used in the proof of Result

1. The goal is to consider the largest possible overestimate that the option whose strike is

nearest to the forward price, Ft,T , can contribute. Figure 9d illustrates. The dotted rectangle

in the figure is the contribution if the strike happens to be equal to Ft,T ; I will call this Case

1. The dashed rectangle is the contribution if the strike equals Ft,T − ε, for some ε > 0 (for

concreteness—the case ε < 0 is essentially identical); I will call this Case 2.

Lemma 1. The option with strike closest to the forward overestimates most in the case in

which its strike is equal to the forward.

Proof. The overestimate in Case 1 is greater than that in Case 2 if

area (b) + area (c) + area (e) + area (f) ≥ area (a) + area (b) + area (f)− area (d)

in Figure 9d, or equivalently,

area (c) + area (d) + area (e) ≥ area (a). (32)

But, by convexity of putt,T (K),

area (b) + area (c) ≥ area (a) + area (b),

from which (32) follows. An almost identical argument applies if ε < 0.

C Tables

Table 5 reports GMM results corresponding to those in Table 1, using the inverse of the

estimated covariance matrix of pricing errors as the weighting matrix in a second stage. This
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constant RM −Rf SMB HML MOM ĉov(MTRT , RT )

Full sample 1.013 −1.235 −1.463 −2.068 — −0.0027

(0.007) (0.618) (0.870) (0.810) — (0.0016)

Jul ’26–Dec ’62 1.013 −1.355 −0.896 −0.420 — −0.0032

(0.010) (0.925) (1.215) (1.326) — (0.0028)

Jan ’63–Feb ’14 1.055 −3.475 −2.962 −8.018 — −0.0030

(0.019) (1.120) (1.426) (1.574) — (0.0020)

Jan ’96–Feb ’14 1.037 −2.524 −3.208 −5.726 — −0.0024

(0.028) (1.709) (2.154) (2.298) — (0.0034)

Full sample 1.078 −2.778 −1.592 −5.119 −5.584 −0.0033

(0.019) (0.701) (0.989) (1.052) (0.957) (0.0019)

Jan ’27–Dec ’62 1.096 −2.986 −1.340 −3.968 −6.961 −0.0027

(0.030) (0.976) (1.346) (1.775) (1.466) (0.0036)

Jan ’63–Dec ’13 1.110 −4.576 −4.343 −9.920 −4.868 −0.0038

(0.029) (1.268) (1.371) (1.710) (1.254) (0.0022)

Jan ’96–Dec ’13 1.076 −4.387 −3.230 −7.976 −3.349 −0.0031

(0.039) (1.987) (2.110) (2.356) (1.533) (0.0036)

Table 5: Estimates of coefficients in the factor models (5) and (6), and of cov(MTRT , RT ),

using the inverse of the estimated covariance matrix of pricing errors as the weighting matrix.

horizon α̂ s.e. β̂1 s.e. β̂2 s.e. R2

1 mo −0.086 [0.063] 2.048 [1.273] 3.908 [1.053] 4.96%

2 mo −0.113 [0.061] 2.634 [1.007] 3.884 [0.761] 8.54%

3 mo −0.086 [0.071] 2.273 [1.407] 2.749 [0.346] 6.79%

6 mo −0.051 [0.076] 1.992 [1.132] −0.525 [1.259] 6.56%

1 yr −0.073 [0.078] 2.278 [0.909] −0.694 [0.680] 10.34%

Table 6: Coefficient estimates for the regression (33).
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horizon α̂ s.e. β̂1 s.e. β̂2 s.e. R2

1 mo −0.103 [0.061] 3.333 [1.292] 1.548 [1.125] 3.61%

2 mo −0.097 [0.063] 3.137 [1.353] 1.532 [1.801] 6.04%

3 mo −0.083 [0.068] 2.902 [1.451] 1.133 [1.855] 6.34%

6 mo 0.016 [0.071] 0.797 [1.560] 0.360 [2.095] 0.74%

1 yr 0.008 [0.061] 0.331 [2.274] 1.761 [3.760] 3.10%

Table 7: Coefficient estimates for the regression (33), excluding the crisis period August 1,

2008 to July 31, 2009.

was shown to be asymptotically optimal by Hansen (1982), but Cochrane (2005) argues that

it may be less robust than the approach adopted in the main text in short finite samples. In

the present case, the results are very similar with either approach.

Table 6 reports results for regressions

RT −Rf,t = α + β1 ×Rf,t · SVIX2
t + β2 × V RPt + εT (33)

of realized returns onto risk-neutral variance and a measure of the variance risk premium,

V RPt ≡ Rf,t · SVIX2
t − SVARt. Realized daily return variance, SVARt, is computed at time

t by looking backwards over the same horizon-length, T − t, as the corresponding forward-

looking realized return (so, for example, I use 1-month backward-looking realized variances

to predict 1-month forward-looking realized returns). To the extent that realized variance is

a good proxy for forward-looking real-world variance, this is a measure of the ‘variance risk

premium.’

Consistent with the empirical findings of Bollerslev, Tauchen and Zhou (2009) and Drech-

sler and Yaron (2011), the coefficient on V RPt is positive and strongly significant at predic-

tive horizons out to 3 months.17 This predictive success reflects the fact that implied and

realized volatility, SVIXt and SVARt, rose sharply as the S&P 500 dropped in late 2008;

implied volatility then fell relatively quickly, while SVARt declined more sluggishly. V RPt

therefore turned dramatically negative in late 2008, as shown in Figure 10 below. Since the

market then continued to fall, this sluggish response of V RPt helps fit the data. At the

6-month and 1-year horizons, however, V RPt responds too sluggishly—it remains strongly

17My approach follows that of Bollerslev, Tauchen and Zhou (2009) rather than that of Drechsler and Yaron

(2011), who use predictive regressions to forecast the evolution of variance itself. While return volatility is

easier to forecast than expected returns (Drechsler and Yaron document R2s on the order of 60%), I follow

the simpler approach to avoid in-sample/out-of-sample issues.
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negative even as the market starts to rally in March, 2009—so there is a sign-flip, with neg-

ative estimates of the coefficient on V RPt are negative at the 6-month and 1-year horizons.

The empirical facts are therefore hard to interpret: the sign-flip raises the concern that the

apparent success of V RPt as a predictor variable may be an artefact of this particular sample

period. Table 7 therefore repeats the regression (33), but excludes the period from August 1,

2008 to July 31, 2009. Once this crisis period is excluded, V RPt does not enter significantly

at any horizon.

From a theoretical point of view, it is hard to rationalize a negative equity premium

forecast within any equilibrium model. It is also implausible that the correctly-measured

variance risk premium should ever be negative. More specifically, Bollerslev, Tauchen and

Zhou (2009) show that within their own preferred equilibrium model, the variance risk pre-

mium would always be positive.
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Figure 10: The variance risk premium, calculated as Rf,t · SVIX2
t − SVARt.

The calculations of R2
OS in Table 3 depend on the rolling mean historical equity premium

shown in Figure 14. The rolling mean is computed using the data series used by Campbell

and Thompson (2008), which itself is based on S&P 500 total returns from February 1871,

with the data prior to January 1927 obtained from Robert Shiller’s website.
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Figure 11: Volume and open interest in S&P 500 index options. The figures show 10-day

moving averages.
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Figure 12: The lower bound on the annualized equity premium at different horizons (in %).

The figures show 10-day moving averages. Mid prices on left; bid prices on right.
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Figure 13: The VXO index, which exploded on Black Monday, October 19, 1987. 10-day

moving average.
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Figure 14: Historical mean equity premium, annualized, on a rolling basis.
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